
E2ETune: End-to-End Knob Tuning via Fine-tuned Generative
Language Model

Xinmei Huang
Renmin University of

China
huangxinmei@ruc.edu.cn

Haoyang Li
Renmin University of

China
lihaoyang.cs@ruc.edu.cn

Jing Zhang
Renmin University of

China
zhang-jing@ruc.edu.cn

Xinxin Zhao
Renmin University of

China
zhaoxinxin798@ruc.edu.cn

Zhiming Yao
Renmin University of

China
yaojimmy2005@ruc.edu.cn

Yiyan Li
Renmin University of

China
liyiyan@ruc.edu.cn

Tieying Zhang
ByteDance Inc
tieying.zhang

@bytedance.com

Jianjun Chen
ByteDance Inc
jianjun.chen

@bytedance.com

Hong Chen
Renmin University of

China
chong@ruc.edu.cn

Cuiping Li
Renmin University of

China
licuiping@ruc.edu.cn

ABSTRACT

Database knob tuning is a significant challenge for database ad-
ministrators, as it involves tuning a large number of configuration
knobs with continuous or discrete values to achieve optimal data-
base performance. Traditional methods, such as manual tuning
or learning-based approaches, typically require numerous work-
load replays and are both time-consuming and resource-intensive.
To address this challenge, we introduce E2ETune, an end-to-end
knob tuner powered by a fine-tuned generative language model.
The key idea is to leverage the exceptional sequence-to-sequence
modeling capabilities of generative language models to capture the
complexmapping betweenworkloads (inputs) and their correspond-
ing promising configurations (outputs). To achieve this goal, we
propose a novel data generation framework to efficiently produce
a large amount of training data, where each data sample consists
of a workload and its promising configuration. Then, these data
are used to fine-tune a generative language model, yielding an end-
to-end knob tuner. This tuner offers out-of-the-box configuration
recommendations for new workloads. We conduct extensive exper-
iments to evaluate E2ETune’s efficiency and effectiveness using 10
representative and 3 real-world benchmarks. Compared to state-of-
the-art methods, E2ETune can identify competitive configurations
in significantly less time.

PVLDB Reference Format:

Xinmei Huang, Haoyang Li, Jing Zhang, Xinxin Zhao, Zhiming Yao, Yiyan
Li, Tieying Zhang, Jianjun Chen, Hong Chen, and Cuiping Li. E2ETune:
End-to-End Knob Tuning via Fine-tuned Generative Language Model.
PVLDB, 18(5): 1466 - 1480, 2025.
doi:10.14778/3718057.3718073

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

Xinmei Huang and Haoyang Li contributed equally to this work. Work done during
the internship at ByteDance.
Jing Zhang and Tieying Zhang are the corresponding authors.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/RUCKBReasoning/E2ETune.

1 INTRODUCTION

Knob tuning in databases involves adjusting the values of vari-
ous knobs to optimize performance for specific workloads. This
process is essential because default database configurations are
not always suitable for every workload. Effective knob tuning can
significantly improve databases’ performance and reliability. How-
ever, this task is NP-hard due to the vast number of tunable knobs
and their wide configuration ranges. Traditionally, database admin-
istrators (DBAs) manually perform knob tuning, relying on their
experience—a time-consuming and impractical approach for numer-
ous workloads and database instances. With advances in machine
learning, researchers have developed automated knob tuners, pri-
marily including Bayesian Optimization (BO)-based methods (e.g.,
iTuned [19], SMAC [29]) and Reinforcement Learning (RL)-based
methods (e.g., CDBTune [87], UDO [81]).
Limitations of Existing Methods. Although existing BO and
RL-based methods are capable of autonomously identifying appro-
priate configurations, they face challenges with tuning efficiency.
In particular, for each new given workload, these methods typi-
cally require extensive iterations to achieve the desired database
performance. Each iteration involves three steps: exploring a new
configuration from a learned model, replaying the workload un-
der the new configuration, and refining the model based on the
database feedback. This process often involves numerous workload
replays, resulting in suboptimal tuning efficiency. For example, for
the TPC-H benchmark [71] at a scale factor of 6, our preliminary
studies reveal that HEBO [15], a robust BO method for hyperpa-
rameter optimization, takes approximately 23 hours to identify a

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 5 ISSN 2150-8097.
doi:10.14778/3718057.3718073

https://doi.org/10.14778/3718057.3718073
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/RUCKBReasoning/E2ETune
https://doi.org/10.14778/3718057.3718073

promising configuration within 100 iterations. To speed up the tun-
ing process, researchers have proposed various transfer learning
methods to reduce the number of required iterations. For example,
workload mapping [77], model ensemble [89, 90], and model pre-
training [39] aim to initialize models using historical tuning data
to potentially quicken model convergence speed. Additionally, the
knob pruning method [36, 73, 91] focuses on narrowing the search
space of configurations, by pinpointing essential knobs and their
optimal ranges, thus improving tuning efficiency. However, even
with these methods in place, finding a promising configuration still
demands dozens to hundreds of iterations. Moreover, when the new
workload significantly differs from those previously encountered,
transfer approaches become almost ineffective.
Motivation and Our Proposal. As described above, the ineffi-
ciency of previous methods mainly derives from the iteration pro-
cess, which incurs a lot of workload replays. To further speed up the
tuning process, we propose to develop a novel, end-to-end knob tun-
ing method named E2ETune. Figure 1 illustrates the core concept
of E2ETune, which reimagines the knob tuning task as an end-to-
end modeling process, effectively eliminating the time-consuming
iterative nature of previous methods. To achieve this goal, inspired
by the observation that skilled database administrators (DBAs) are
often able to manually determine a suitable configuration for a new
workload, drawing on their extensive experience, we posit that there
exists a complex distribution-mapping relationship between work-
loads and their optimal configurations. Hence, by training a model
capable of understanding the distribution-mapping relationship,
we can establish an end-to-end solution for knob tuning.
Challenges and Our Solutions. However, developing such an
end-to-end knob tuner presents significant technical challenges:
(1) In our preliminary attempts, the first challenge we encounter
is that traditional machine learning algorithms, such as multilayer
perception (MLP) and random forest, can not efficiently learn the
distribution mapping from the training data due to their limited
learning capabilities. To tackle this challenge, motivated by the
powerful end-to-end modeling capabilities of generative language
models (LMs)1, such as GPT-4 [51] and LLaMA-3 [48], fine-tuning
a language model to learn and capture the complex distribution
mappingwill be a feasible solution. Therefore, in this paper, we inno-
vatively formalize the knob tuning task as a sequence-to-sequence
generation task, where the input is the features of the workload
and the output is the promising knob configuration. (2) Then, to
effectively train an end-to-end knob tuner, it’s crucial to obtain a
substantial dataset of <workload, promising configuration> pairs.
Yet, the absence of publicly accessible datasets fulfilling this require-
ment poses a significant hurdle, marking the scarcity of training
data as the second major challenge. To overcome this challenge, we
introduce a novel training data construction framework designed
to efficiently gather the necessary training data. This framework
is structured around two principal components: the generation of
workloads and the collection of labels. In the first component, our
goal is to generate a large number of diverse and high-quality work-
loads, leveraging existing database instances. Following this, in the
second component, we employ HEBO [15] to identify a promising

1In this paper, we specifically use “language model” and its abbreviation “LM” to
denote the sequence-to-sequence generative language model.

Workload

KnobsSurrogate Model
(e.g. Gaussian Process)

Recommend
Configuration

SQLSQL

Workloads

Update

Database

Traditional
Methods

E2ETune
Fine-tuned Generative

Language Model

Suitable
Configuration

Iteratively optimize knobs
(numerous iterations)

Surrogate ModelDatabase

WL

Workload

2. Evaluate & Update

Configuration
1. Apply 3. SamplePrevious

Methods

1st iteration
.....N-th iteration

Suitable
Configuration

WL Extract
Features

Figure 1: Previous knob tuning methods vs. E2ETune.

configuration for each synthesized workload as its label. Further-
more, to expedite the process of label collection, we have developed
a cost model that serves as a substitute for actual workload ex-
ecutions within the iterative process of HEBO. In practice, after
obtaining enough training data, we fine-tune Mistral-7B [30], a
Transformer-based [79] generative language model with 7 billion
learnable parameters, to perform end-to-end knob tuning.
Evaluation. To thoroughly evaluate E2ETune’s effectiveness, we
use 10 representative benchmarks—TPC-H, TPC-DS, JOB, SSB, SSB-
flat, TPC-C, Twitter, Wikipedia, Smallbank, and YCSB—and 3 real-
world benchmarks: StackOverflow, SSAG, and AMPS. As E2ETune
is fine-tuned using a wide range of diverse and high-quality work-
loads, it may exhibit the ability to generalize effectively to new
test workloads across various database instances, whether seen
or unseen during training, without the need for additional fine-
tuning. Therefore, our evaluations encompass both “in-schema” and
“cross-schema” scenarios. In the “in-schema” scenario, we evaluate
E2ETune’s performance on test workloads from database instances
included in the training sets (for example, training on generated
TPC-Hworkloads and testing on the TPC-H official workload). Con-
versely, the “cross-schema” scenario explores E2ETune’s capacity
to generalize to test workloads involving database instances it has
not encountered previously (for instance, training on generated
TPC-DS workloads and testing on the TPC-H official workload).

The main contributions of this paper are as follows:

• End-to-end Database Knob Tuning: We introduce E2ETune,
a data-driven, end-to-end database knob tuning method based on
the fine-tuned language model. It analyzes workload features and
then directly recommends promising configurations, eliminating
the need for numerous iterations. To the best of our knowledge,
E2ETune is the first LM-based end-to-end knob tuning method.

• Novel Data Generation Pipeline: To gather training data for
E2ETune, we develop a novel data generation pipeline. This
involves synthesizing new workloads, labeling them with ap-
propriate configurations, and introducing a new cost model as
a proxy for actual execution to significantly speed up the data
collection process.

• Comprehensive Evaluation: Our extensive evaluations, span-
ning 10 representative and 3 real-world benchmarks, reveal that
E2ETune not only identifies the most effective configurations but
also significantly enhances tuning efficiency, surpassing existing

methods. Moreover, detailed “cross-schema” experiments demon-
strate that E2ETune can smoothly adapt to new workloads on
previously unseen database instances.

2 RELATEDWORK

2.1 Knob Tuning System

A knob-tuning system typically comprises a knob tuner to identify
promising configurations and a knowledge transfer module to lever-
age historical knowledge. In contrast to prior studies, E2ETune
integrates knowledge transfer into the core knob-tuning process,
representing a novel approach. We will now review existing knob
tuners and knowledge transfer methods.

2.1.1 Knob Tuning. Existing knob tuning methods can be classified
into 4 categories: heuristic-based methods, Bayesian Optimization
(BO)-based methods, Reinforcement Learning (RL)-based methods,
and Deep Learning (DL)-based methods.
Heuristic-based methods. Heuristic-based methods involve ex-
ploring the search space through manually crafted rules [16] or a
set of predefined heuristic rules [1]. Nonetheless, these approaches
demand significant human intervention and often exhibit limited
search efficiency, resulting in suboptimal performance.
BO-based methods. BO-based methods, such as VBO [80], HEBO
[15], and SMAC [29], use surrogate models to estimate database
performance metrics from given features. Each method uses a dif-
ferent surrogate model: VBO employs a vanilla Gaussian process,
while SMAC uses a random forest. These approaches require many
iterations to gather tuning observations. In each iteration, a con-
figuration is sampled from the surrogate model and applied to the
database. The workload is executed to obtain performance metrics,
which refine the surrogate model. This iterative process enables
surrogate models to iteratively improve their accuracy, leading to
optimized database configurations.

The pioneering knob tuning system iTuned [19] uses a GP model
as its surrogate. Subsequent systems have enhanced surrogate ac-
curacy by incorporating various features. For instance, OnlineTune
[90] includes query arrival rates, types and indexes. CGPTuner [9]
and RelM [34] focus on system-level attributes like memory con-
trol across workloads, containers, and JVM setups. ResTune [89]
adds resource utilization metrics such as CPU, memory, and I/O
usage. Despite advancements, BO-based models often require hun-
dreds of iterations to recommend a suitable configuration for a new
workload. This process is time-consuming and resource-intensive,
highlighting the need for efficiency improvements in tuning.
RL-based methods. RL-based knob tuning methods [22, 39, 87]
use reinforcement learning algorithms to adjust database knobs.
The Deep Deterministic Policy Gradient (DDPG) [64], known for its
actor-critic framework, is widely used in these systems. The actor
selects a configuration based on the state, while the critic evaluates
its efficacy, optimizing the policy and value function iteratively.
DDPG handles continuous action spaces effectively, making it suit-
able for knob tuning. CDBTune [87] employs DDPG, using runtime
metrics as the state to generate database configurations. QTune
[39] enhances this approach with Double-State DDPG (DS-DDPG),
incorporating query-related features, such as the types of queries

and the tables involved, to improve performance. However, like BO-
based methods, RL-based approaches often require many iterations
to achieve stable performance, which can be resource-intensive.
DL-based methods. DL-based knob tuning methods [66, 78] train
neural networks as learned cost models to predict database per-
formance from given features, facilitating rapid configuration ex-
ploration. For instance, [78] uses a deep neural network instead of
the Gaussian process model in OtterTune [77]. Similarly, iBTune
[66] trains a deep neural network to estimate response time using
metrics like logical reads and CPU usage. However, these learned
cost models are usually just part of the tuning system, which may
still require iterative trials and adjustments.

2.1.2 Knowledge Transfer. Traditional knob tuning methods often
require numerous iterations to identify promising configurations,
posing efficiency challenges. To address these cold-start issues, re-
searchers have developed various knowledge transfer methods: (1)
Workload mapping (OtterTune [77]) uses past tuning data to im-
prove BO-based tuners’ initial states. (2) Model pre-training (QTune
[39]) pre-trains RL models with historical data, then fine-tunes
them on new workloads for faster convergence. (3) Model ensemble
(ResTune [89]) combines models from past tasks to adapt to new
workloads. (4) Knob pruning (GPtuner [36], OpAdviser [91]) refines
the configuration space by selecting critical knobs and their optimal
ranges based on past experiences, reducing the search space.

Despite these advancements, base tuners still need additional
iterations for new workloads, creating a bottleneck. Our paper
proposes a novel approach to streamline the tuning process by
modeling it as an end-to-end task using historical data, aiming to
eliminate the need for multiple iterations.

2.2 Language Models for Databases

Recent research in databases has extensively harnessed LMs to
optimize various aspects such as database diagnosis (e.g., root cause
analysis) [98, 99], text-to-SQL [40, 41, 55], data preparation (e.g.,
value filling and entity resolution) [67], data integration [5, 65],
query processing [72], and table question answering [24, 31, 85].

Notably, DB-BERT [73] and GPTuner [36] leverage LMs for knob
tuning by using knowledge from web forums and manuals to con-
strain the search space, but still require a base tuner for iterative
exploration. In contrast, our E2ETune trains a language model on
extensive historical tuning tasks to directly predict suitable config-
urations, eliminating the need for online tuning. This model, after
offline training, can be applied to various workloads across different
database instances, significantly enhancing tuning efficiency.

3 PROBLEM DEFINITION

Definition 1 (Database Knob Tuning). In a database system, there is a
set of adjustable knobs, denoted as 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑛}. These knobs
control various configurable aspects of the database, such as work
memory size and maximum connection limits. Each knob 𝑘𝑖 can
assume a value 𝑠𝑖 that falls within a permissible range 𝑆𝑖 , which can
be either continuous numerical values or categorical forms. The
entirety of feasible configurations forms a multi-dimensional space
for the database system, denoted by 𝑆 = 𝑆1 × 𝑆2 × ... × 𝑆𝑛 . A unique
configuration within this space is represented by a set of knob

Weighted
Sampling

Diversity
Control

Step 1: Workload Generator (§5.1 & §5.2)

GPT-4

OLAPExample
 Schema, Values, Queries

Gaussian
Process

Workload
Replayer

Sampled Config

Executed Performance

① Apply Config

② Update GP Model

Quality
Control

Step 2: Label Collection (§ 5.3 & §5.4)

New (Unseen)
Workload

Candidate
Configs

Training Data

Stage I:
Training Data Construction

Stage III:
Knob Tuning

Fine-Tuned
LM

Best
Config

Apply &
Evaluate

Sample

Predict
Performance

....

Stage II:
 Fine-tuning LM

OLTP

Workloads
SQL

Cost Model

⑤ Update GP Model

④ Input Config

Sampled Config

③ Training Cost Model with Observations

Predicted Performance

Cost Model: Predicting database performance to replace the workload replayer, for faster label collection.

Normalized
Best Configs

 Diverse & Simple
OLTP Transactions

WL

Supervised
Fine-Tuning

Feature Extraction

Workload
 Features

Feature
Extraction

Fine-Tuned
LM

Workloads
WL
WL

WL
WL TXN

TXN

Figure 2: Overview of E2ETune (Refer to Section 4 for detailed explanation).

values s = (𝑠1, 𝑠2, ..., 𝑠𝑛) ∈ 𝑆 . Given a workload𝑊 = {𝑞1, ..., 𝑞𝑚}
consisting of𝑚 queries and a database instance 𝐷 , the objective of
knob tuning is to find the optimal configuration s∗ = (𝑠∗1, 𝑠

∗
2, ..., 𝑠

∗
𝑛)

within the multi-dimensional space to optimize a performance
metric𝑀 , such as minimizing latency or maximizing throughput.
Definition 2 (End-to-End Knob Tuning via LMs). Given a database
instance 𝐷 and a workload𝑊 , E2ETune aims to train a language
model to learn the distribution mapping function between the work-
load features and the optimal configuration:

𝐿𝑀Θ (𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (𝐷,𝑊)) → s∗, (1)

where 𝐿𝑀Θ (·) denotes the LM, Θ represents the learnable param-
eters of the LM, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (·) denotes the function for extracting
features of workload𝑊 on its corresponding database instance 𝐷 ,
and s∗ = (𝑠∗1, 𝑠

∗
2, ..., 𝑠

∗
𝑛) represents an optimal configuration that

maximizes or minimizes the performance metric𝑀 .
Since this is a data-driven method, it requires a substantial collec-

tion of < 𝐷,𝑊 , s∗ > triplets for training. To obtain such a dataset,
we introduce a data generation pipeline detailed in Section 5. Specif-
ically, we assume the availability of database instances and proceed
to automatically generate a diverse array of OLAP and OLTP work-
loads (refer to Section 5.1 and Section 5.2). Subsequently, we capture
the configurations associated with these workloads that lead to peak
performance metrics (refer to Section 5.3). After obtaining enough
training data, we use them to train a language model in a sequence-
to-sequence manner, as outlined in Section 6. Finally, we deploy
the trained LM to suggest suitable knob values for new workloads,
as elucidated in Section 7.

4 E2ETUNE OVERVIEW

The overview of E2ETune is illustrated in Figure 2, which consists
of 3 main stages.
Stage 1: Training Data Construction (Section 5). The first stage
involves the offline collection of training data for fine-tuning the
LM. This begins by generating diverse OLAP and OLTP workloads
across database instances and identifying promising configurations.

For OLAP, GPT-4-Turbo creates complex SQL queries based on data-
base characteristics, with diversity and quality control integrated.
For OLTP, new workloads are generated by randomly weighting
predefined transactions. A BO-based iterative tuner, HEBO, then
determines promising configurations to serve as training labels. A
cost model accelerates the label collection process during HEBO’s
tuning. Specifically, real workload replaying generates observa-
tions to train the cost model, which then serves as a proxy for real
executions during tuning.
Stage 2: Fine-tuning LM (Section 6). The second stage involves
offline fine-tuning of the LM with the data collected in the first
stage, teaching it to generate promising configurations based on
the features of the workload. More precisely, we gather workload
features from three dimensions: workload statistics, query plans,
and internal database metrics. Furthermore, to address the lan-
guage model’s limitations in understanding numerical values, we
discretize the values of each configuration knob and task the LM
with generating the discretized configurations.
Stage 3: Knob Tuning with Fine-tuned LM (Section 7). Once
the LM is trained, it can be deployed to recommend configurations
for any given workload. In practice, we sample multiple configura-
tions from the LM by setting the temperature to 1.0 and then we
use the cost model trained in stage 1 to select the configuration
with the best estimated performance as the recommended result.

5 TRAINING DATA CONSTRUCTION

This training data construction process begins with generating
diverse, high-quality workloads tailored to specific database in-
stances. Workloads are categorized into OLAP and OLTP. OLAP
workloads focus on complex analytical queries, primarily using
SELECT statements for operations like aggregation and slicing. Their
performance is measured by latency, the time taken to execute
queries. OLTP workloads handle real-time transactional processes,
comprising SELECT, INSERT, UPDATE, and DELETE statements. Their
efficiency is evaluated by throughput, measured in transactions

per second. Given their distinct characteristics, we employ tailored
workload generation strategies for OLAP and OLTP.

Subsequently, to identify appropriate configurations for the newly
generated workloads, we leverage HEBO [15], a powerful BO-based
knob tuner, to acquire the training labels of the LM (refer to Sec-
tion 5.3). Nevertheless, the tuning process of HEBO necessitates
numerous workload replaying, significantly impeding the pace of
the data preparation. To address this challenge, we introduce a cost
model to replace real executions in HEBO’s tuning process. This
model reduces execution time and allows simultaneous tuning of
multiple workloads on a single machine, eliminating resource con-
tention. By integrating HEBO with the cost model, we efficiently
generate a large volume of high-quality <workload, suitable config-
uration> pairs within a feasible offline timeframe.

5.1 OLAP Workload Generation

Given that each OLAP benchmark usually comprises a limited num-
ber of query templates with variable slots, generating new OLAP
workloads by simply substituting these slots with different values
might lead to insufficient diversity, potentially undermining the
overall generalizability of the fine-tuned language model. There-
fore, to create diverse and high-quality OLAP workloads, we first
utilize GPT-4-Turbo [51, 52] to generate realistic and complex SQL
queries based on the database information. After obtaining a suffi-
cient number of queries, new OLAP workloads can be obtained by
choosing a subset of these queries.

The prompt utilized to guide GPT-4 to generate OLAP queries
comprises six components:

• “Task Overview” clarifies the objectives for GPT-4-Turbo.
• “Database Schema” outlines the database instance’s structure

using Data Definition Language (DDL) statements, including
table names, column names, primary and foreign keys, etc.

• “Guidance for Query Generation” sets constraints for query gen-
eration, such as the required SQL dialect.

• “Predicate Generation Aid” offers some column values to assist
GPT-4-Turbo in formulating query predicates.

• “Sample OLAPQueries” presents a few benchmarked SQL queries
to exemplify the desired complexity level of the generated queries.

• “Output Format” specifies the format of GPT-4-Turbo’s output
text, aiding in parsing the generated query.

Diversity Control: To ensure query diversity, we have imple-
mented several strategies: (1) First, we randomly select tables from
the database and incorporate their DDL statements into the “Data-
base Schema” part. This approach also reduces API costs associated
with invoking GPT-4-Turbo, especially for database schemas with
many tables and columns, as the model charges based on the num-
ber of tokens it must process. (2) Subsequently, we randomly choose
column values from the selected tables to form the “Predicate Gen-
eration Aid” part. (3) Finally, we randomly select queries from
the benchmarked queries to compose the “Sample OLAP Queries”
part. To prevent direct copying, we clarify in the prompt that these
queries are for illustrative purposes only.
Quality Control: To prevent syntax errors, we use the EXPLAIN
command to evaluate the syntactical accuracy of generated queries.
If errors are detected, GPT-4-Turbo is prompted to fix them based

on the EXPLAIN feedback. Queries with persistent syntax errors are
discarded. Among the error-free queries, we execute each one and
exclude any that exceed a specified execution time threshold (e.g.,
over one hour) to mitigate long runtimes.

5.2 OLTP Workload Generation

In the realm of OLTP benchmarks, each benchmark typically com-
prises a set of predefined transactions. For instance, in the case
of TPC-C, five distinct transactions are defined: delivery, new or-
der, order status, payment, and stock level. In contrast to OLAP
benchmarks, we observe that adjusting the weights of individual
transactions in OLTP benchmarks can result in a wide range of
diverse OLTP workloads. This is because the attributes of an OLTP
workload, such as the read-write ratio, can be altered by varying
the transaction weights. Hence, by manipulating these weights, we
can effectively generate a multitude of new OLTP workloads.

5.3 Label Collection

We identify suitable configurations for generated workloads to
serve as training labels for the LM using HEBO [15]. Specifically,
we perform HEBO to explore the desired configurations. However,
HEBO, being a BO-based method, necessitates numerous iterations
during the tuning process. Practically, tuning the knobs for a work-
load demands one to several hours, and a single machine can only
tune one workload at a time to avoid resource preemption, signifi-
cantly slowing data collection.

To address this issue, we introduce a novel cost model to sub-
stitute real executions in the iterations. The cost model is trained
to predict database performance under a given configurations and
workloads. By utilizing this model, we guide HEBO’s search process
without extensive workload runs. Additionally, it allows concurrent
tuning of multiple workloads, further improving the efficiency. Fur-
ther details regarding the cost model are elaborated in Section 5.4.

Given that the cost model’s predictions may not be entirely
precise, therefore, after obtaining the final configuration from the
cost model-driven HEBO, we apply it to the database and execute
the workload to verify that it surpasses the default configuration
in terms of the database performance metric.

5.4 Cost Model

Cost Model Architecture. Research conducted by [88] has shown
that Gradient Boosting Regressor (GBR) and Random Forest Regres-
sor (RFR) stand out as powerful regression models, well-suited for
the cost estimation task. GBR and RFR are trained independently on
the same dataset and their predictions are averaged in an ensemble
during inference, reducing overfitting and improving generalization
to unseen data.
Cost Model Input. Given that the core aim of the cost model is
to estimate performance metrics under specific configurations and
workloads, the model’s input comprises two key components: the
configuration specifics and workload features.

To enhance the efficiency, stability, and performance of the cost
model, normalization of each knob value in a configuration is crucial
due to the varying permissible value ranges across different knobs.
We use min-max normalization for each numerical knob value,

expressed as:

𝑠𝑖 =
𝑠𝑖 −min(𝑆𝑖)

max(𝑆𝑖) −min(𝑆𝑖)
, (2)

where 𝑠𝑖 represents the value of the 𝑖-th knob, and max(𝑆𝑖) and
min(𝑆𝑖) denote the maximum and minimum values of the 𝑖-th
knob, respectively. The range of knob values is typically dictated by
hardware specifications, such as memory size, number of CPU cores,
etc. In instances where a knob lacks a specified range 𝑆𝑖 , a default
range from 0 to 231−1 is assigned. Consequently, ŝ = (𝑠1, 𝑠2, . . . , 𝑠𝑛)
denotes a standardized representation of the configuration.

For workload features, we integrate database engine and oper-
ating system statistics to characterize the workload comprehen-
sively. Following a careful selection process, we have identified
14 key metrics: xact_commit, xact_rollback, blks_read, blks_hit,
tup_returned, tup_fetched, tup_inserted, conflicts, tup_updated,
tup_deleted, disk_read_count, disk_write_count, disk_read_bytes,
and disk_write_bytes2. The metrics derived from running the work-
load using the default configuration offer valuable insights for
recommending a promising configuration. For example, a high
disk_read_count indicates that performance bottlenecks may stem
from demanding disk read operations, suggesting that adjusting
memory-related knobs could potentially improve overall perfor-
mance.

Similar to configurations, we apply min-max normalization to
the metric values based on the allowable range of the metrics to
ensure consistency and numerical stability.

Finally, the input to the cost model is the concatenation of the
normalized configuration features, denoted as ŝ, and the normalized
workload features, denoted as f̂ . This combined input, Concat(ŝ, f̂),
ensures the cost model incorporates both configuration details
and workload characteristics to provide robust and generalized
performance estimations. Additionally, since the input vector length
remains constant, the trained cost model can be applied to new
workloads and database instances.
CostModel Output. Given the varying scales of performance met-
rics across different workloads, directly predicting specific metric
values presents significant challenges for the cost model. How-
ever, it’s crucial to understand that the cost model doesn’t need
to precisely estimate these values across different workloads since
comparing performance metrics between different workloads isn’t
required. Instead, the primary focus should be on distinguishing
between superior and inferior configurations within the same work-
load, rather than accurately predicting absolute performance metric
values. This approach simplifies the learning complexity for the
cost model. To achieve this, we normalize the performance metrics
across diverse configurations within a specific workload similarly
to Eq. 2, obtaining 𝑝𝑖 𝑗 , the normalized performance metric for the
𝑗-th configuration of the 𝑖-th workload. Finally, the cost model is
trained to predict normalized performance based on normalized
configuration and workload features.
Cost Model Training Data. To train the cost model, we initially
collect a significant amount of tuning observations (i.e., <workload,
configuration, performance metric> triplets) as training data using

2These metrics are derived from PostgreSQL, which serves as our experimental plat-
form. It’s worth noting, however, that other database engines, such as MySQL, offer
capabilities to access similar internal metrics.

HEBO under the guidance of actual executions. Specifically, we
start by randomly selecting 13 newly generated workloads from
each of the 10 considered database instances, resulting in a total
of 130 workloads. Subsequently, we conduct knob tuning using
HEBO alongside real executions, setting the maximum number of
iterations to 100, to find promising configurations for the selected
workloads. At each iteration of the HEBO process, we capture a
tuning observation as a training data sample for the cost model,
accumulating a total of 13,000 training data samples. Following this,
we train the cost model within a 10-fold cross-validation framework
to assess its estimation accuracy. Further evaluation details of the
cost model can be found in Section 8.4.2. Once a dependable cost
model is established, we integrate it into HEBO to replace real
executions, thereby expediting the label collection process.

6 FINE-TUNING LM

Once a sufficient number of historical tuning tasks have been ac-
quired, we can proceed to train a language model to learn the
complex relationship between workload and its suitable configura-
tion. This section elaborates on how we formalize the knob tuning
task in an end-to-end manner using the LM.

6.1 LM Input Sequence

The input to the LM primarily consists of workload features es-
sential for enabling the model to understand and interpret the
workload, thereby aiding in generating appropriate configurations.
When presented with a workload, we comprehensively assess three
dimensions of workload features: workload statistics (information
at the workload level), query plans (information at the query level),
and internal metrics (information at the system level), all of which
are then fed into the LM. Workload statistics offer crucial insights
into the inherent characteristics of the workload. Query plans fur-
nish more detailed information regarding the individual queries
within the workload. Internal metrics provide granular details about
the workload at a system level. Note the workload features input to
the LM are much richer than those used for the cost model because
the LM can accept a more flexible format and longer input than
traditional small GBR and RFR models used for building the cost
model. The specific details are outlined below:

• Workload Statistics. Workload statistics include: the access
frequency of each table, the total number of SQL statements, the
read-write ratio, the average number of predicates per SQL query,
and the proportion of key operators such as ORDER BY, GROUP
BY, and aggregation functions.

• Query Plans. Inspired by Qtune [39], we integrate the query
plans associated with all SQL statements in the workload. The
query plans can be obtained using the EXPLAIN command. Un-
like prior research that typically utilizes TCNN [47] or Query-
Former [93] for embedding query plans, we treat the query plans
as text. Given that the query plan is structured as a sequence, we
use nested parentheses to represent the hierarchical relationships
between operations. Each pair of parentheses encloses either a
single operation or a group of operations executed within a larger
step in the plan. Additionally, we augment each operation with
the cost estimated by the database engine.

Table 1: Data storage size and the number of training samples in each database instance.

Benchmark TPC-H [71] TPC-DS [70] SSB [53] SSB_flat [53] JOB [37] TPC-C [18] YCSB [18] SmallBank [18] Twitter [18] WikiPedia [18]

Size 8.6 GB 2.1 GB 13.3 GB 11.7 GB 6.9 GB 5.0 GB 4.0 GB 20.0 GB 0.4 GB 4.4 GB
#Workload 271 285 299 299 299 300 300 300 300 300

• InternalMetrics. Internal database metrics offer crucial insights
into workload execution, resource utilization, and potential bot-
tlenecks or inefficiencies within the database system. We utilize
the identical set of 14 metrics as inputs for the cost model (see
section 5.4). These metrics are obtained by running the workload
under the default configuration. To aid the LM in comprehending
large numerical values, we simplify them by representing them
in orders of magnitude. For instance, we convert “83,438,203” to
“83.4 million”.
All these features are flattened and concatenated into a sequence

before being fed into the LM. The LM’s attention mechanism effec-
tively integrates these multi-dimensional features to facilitate the
subsequent configuration generation task.

6.2 LM Output Sequence

Utilizing the extracted workload features, the LM is trained tomodel
the distribution of suitable configurations. However, generating
numerical knob values directly poses challenges due to varying
value scales across different knobs. To address this, we normalize
the knob values in the configuration using the method detailed in
Eq. 2. Then, we discretize these normalized values into pre-defined
buckets. Specifically, we segment the knob values into 10 buckets,
labeled as “0% to 10%”, “10% to 20%”, and so on. This approach
enables the LM to generate the buckets corresponding to each knob,
which is believed to be easier for the LM to learn compared to
outputting exact numerical values. For additional training details,
please refer to Section 8.1.4.

6.3 Loss Function

Given an input sequence 𝑥 and its corresponding output sequence𝑦,
we optimize the parameters of the LM with a conditional language
modeling loss: 𝑝𝜃 (𝑦 |𝑥) =

∏𝑙
𝑡=1 𝑝𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡), where 𝜃 denotes the

learnable parameters of the LM, 𝑙 denotes the length of the output
sequence, and 𝑦<𝑡 represents all preceding tokens before position
𝑡 in the output sequence. The primary goal of fine-tuning is to
enhance LM’s ability to predict the output sequence with maximum
likelihood, given the input sequence.

7 KNOB TUNINGWITH FINE-TUNED LM

After obtaining the fine-tuned LM, we can perform knob tuning in
a sampling-then-ranking inference strategy.
Step1: Sampling. Given that the LM is fine-tuned to model the
probability distribution of suitable configurations based on the
workload features. Therefore, we can conduct sampling on the
LM’s output distribution to obtain multiple candidate configura-
tions during the inference phase. This sampling-based approach
significantly boosts the diversity and innovation of the generated
configurations, enabling the LM to explore a wider range of poten-
tial solutions and identify the optimal configuration. In practice,
we typically use a temperature of 1.0 and set the sampling count to

8. Once the LM predicts a discretized configuration, we convert the
buckets into numerical values via denormalization. For instance, if
the LM predicts that the “max_wal_senders” knob falls within the
“30% to 40%” bucket, we calculate the midpoint of this bucket, (30%
+ 40%) / 2 = 35%, and then obtain the specific knob value using the
maximum and minimum values of that knob.
Step2: Ranking. Following the generation of 8 candidate configu-
rations, we rank them to identify the best option. For this ranking
phase, we leverage the cost model introduced in Section 5.4 to eval-
uate and order the sampled configurations, ultimately selecting the
best one as the final recommended configuration.

8 EXPERIMENT

8.1 Experimental Settings

8.1.1 Datasets. To evaluate E2ETune’s performance, we use 10
widely adopted benchmarks, including five OLAP benchmarks
(TPC-H, JOB, SSB, SSB-flat, TPC-DS) and five OLTP benchmarks
(TPC-C, Smallbank, YCSB, Twitter, Wikipedia). Each benchmark in-
cludes a database instance and predefined templates for SQL queries
(OLAP) or transactions (OLTP).

We train the model on the synthetic training dataset and test
its performance on the original workload of each benchmark. For
OLAP’s test set, queries are generated by populating templates with
random values. For OLTP’s test set, default transaction weights
are used to create testing workloads. For the training set, we use
the method introduced in Section 5 to generate 300 new work-
loads per database instance and gather their corresponding labels
(i.e., promising configurations). After filtering out underperforming
configurations, we have 2,953 training samples for the LM.

The training data originates from two sources: HEBO with real
execution and HEBO with a cost model. Real execution tunes 130
workloads for training the cost model. Labels for the remaining
2,823 samples are generated via the cost model. We ensure that
original workloads are not included in the training data. Table 1
shows data size and training sample count per database instance.

To further evaluate the practical application value of E2ETune,
we additionally consider three benchmarks from real-world sce-
narios: StackOverflow (4.5GB)3, SSAG (58GB), and AMPS (25GB).
StackOverflow is an OLAP benchmark designed to analyze the
website data, for example, mining the features of unanswered ques-
tions. SSAG and AMPS are two private business workloads in
ByteDance. Specifically, SSAG is an OLAP benchmark utilized in
slow SQL analysis and governance scenarios, encompassing com-
plex queries such as slow SQL template analysis, logical database
analysis, and new slow SQL identification. AMPS, on the other hand,
is an OLTP benchmark used in the AI platform services, which in-
cludes transactions related to user management, permission control,

3The database is sourced from https://stackoverflow.blog and benchmarked queries
are sources from https://data.stackexchange.com/stackoverflow/queries.

algorithm management, model management, and task scheduling.
These benchmarks are employed solely as test sets.

8.1.2 Baselines. TraditionalMethods. Weevaluate the BO-based
methods SMAC [29] and HEBO [15]. SMAC has shown strong per-
formance in database knob tuning [88], while HEBO has demon-
strated effectiveness across hyperparameter optimization tasks [15].
In addition, we try an RL-based method CDBTune [87], which uses
the DDPG algorithm for database tuning. All methods are executed
for a maximum of 100 iterations, with each iteration involving time-
consuming workload replay. Furthermore, we utilize our trained
cost model to replace real execution during the iterative process,
resulting in three new baselines: SMAC + Cost Model, HEBO + Cost
Model, and CDBTune + Cost Model. Finally, we randomly sample
1,000,000 configurations using the Latin Hypercube Sampling strat-
egy from the knob space and employ the cost model to identify the
best configuration. This baseline is referred to as Random Sampling
+ Cost Model.
Knowledge Transfer Methods. As categorized in Section 2.1.2,
we consider four types of transfer methods: workload mapping,
model ensemble, model pre-training, and knob pruning.
Workload Mapping : Introduced in OtterTune [77], this technique
leverages historical tuning data from similar workloads to initialize
a new tuning model. This technique is often integrated into BO-
based methods, and we integrate it with HEBO and SMAC.
Model Ensemble : Proposed by Restune [89], this technique combines
multiple historical knob-tuning models and incorporates workload
features. For a new workload, similar historical workloads’ models
are ensembled. Commonly, this integrates with BO-based methods.
Model Pre-training : QTune [39] introduces this technique, the actor
and critic models are pre-trained with past tuning tasks and fine-
tuned with RL-based methods. In our experiments, we assess it with
CDBTune in two scenarios: with and without online tuning, where
online tuning involves fine-tuning based on real-time feedback.
Knob Pruning : This technique reduces the search space. OpAdviser
[91] refines the search space based on similar historical workloads’
insights. DB-BERT [73] and GPTuner [36] leverage languagemodels
to extract useful information from database manuals, effectively
trimming the search space during tuning.

To ensure fairness, the historical tuning tasks utilized in these
knowledge transfer techniques are the training dataset for E2ETune.
The model for selecting tuning methods in OpAdviser is trained
using their publicly available dataset.

8.1.3 Metrics. For OLAP workloads, our goal is to minimize the
query latency. Therefore, the performance improvement is defined
as: Δ =

default latency−optimized latency
default latency , where “default latency” is

from the default configuration and “optimized latency” is from
the recommended configuration. For OLTP workloads, our goal
is to maximize throughput (i.e., transactions per second, tps). The
performance improvement is defined as Δ =

optimized tps−default tps
default tps ,

where “default tps” is from the default configuration and “optimized
tps” is from the recommended configuration.

8.1.4 Implementation details. We use PostgreSQL 12.2 to manage
all databases. Following prior studies [87, 88], we manually select 45
crucial knobs for tuning, while retaining default values for the rest.
The DBMS is restarted with each new configuration since some
knob modifications require it. For training the LM, we use Mistral-
7B-Instruct-v0.24 as the base model, fine-tuned with PyTorch 2.1 [2]
and Hugging Face Transformers [83]. The learning rate is set to
2e-5, batch size to 128, and maximum context length to 8,192. The
model is trained for 4 epochs using a cosine decay learning rate
scheduler. To save GPU memory, we use FlashAttention-2 [17] and
DeepSpeed ZERO [58] for optimized data parallelism.

8.1.5 Environments. We use a CPU server with an Intel Xeon E5-
2650 v4 (12 cores, 24 threads) and 64GB RAM to host the PostgreSQL
database for experiments. Fine-tuning and deploying the LM are
done on a machine with an Intel Xeon Gold 5218 CPU, 256GB
RAM, and 4 NVIDIA GeForce RTX 3090 GPUs. The process of fine-
tuning the LM takes approximately 10 hours. These machines are
connected via high-speed local networks.

8.1.6 Evaluation Settings. The evaluation is conducted in three
different settings: In-Schema: The LM is trained on our generated
workloads and tested on the original workloads of 10 representative
benchmarks. Cross-Schema: We employ a 5-fold cross-validation
approach to simulate cross-schema scenarios. In each fold, we se-
lect one OLAP and one OLTP benchmark as the hold-out test set,
training the LM on our generated samples from the remaining
8 benchmarks. This ensures there is no schema overlap between
the training and testing sets, allowing us to evaluate E2ETune’s
performance on new database instances. Real-World: The LM is
trained using our generated data samples and directly applied to
recommend configurations for three new real-world benchmarks.

8.2 Main Results

8.2.1 In-Schema Evaluation. Regarding the in-schema evaluation
results shown in Figure 3 (a), we have the following findings:

E2ETune emerges as the fastest knob tuningmethodwhile

delivering competitive database performance improvements.

It achieves the shortest tuning time across all ten benchmarks, show-
casing the advantages of end-to-end modeling. For instance, in the
TPC-H benchmark, HEBO takes 1,381.7 minutes; even with work-
load mapping, it still requires 328.7 minutes. In contrast, E2ETune
completes the task in just 19.8 minutes, achieving up to a 98.6%
reduction in time

(
1,381.7−19.8

1,381.7 = 98.6%
)
. Regarding performance,

E2ETune identifies the best configurations in four benchmarks
(JOB, SSB-flat, Twitter, Smallbank) and the second-best in five
benchmarks (TPC-H, SSB, TPC-DS, TPC-C, Wikipedia).

E2ETune breaks its upper bound, HEBO. Despite the fact
that the training labels (i.e., promising configurations) for E2ETune
are derived from HEBO, E2ETune surpasses HEBO’s performance
across all benchmarks. This unexpected outcome can be attributed
to E2ETune’s “sampling-then-ranking” inference strategy. The sam-
pling introduces randomness, allowing the trained LM to explore a
range of configurations around HEBO’s upper bound. This insight
suggests that in the future, E2ETune could potentially be leveraged

4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

0 250 500 750 1000 1250
0

20

40

60

 (%
)

TPC-H

0 200 400 600 800
0

20

40

JOB

0 200 400 600
0

10

20

30

40

SSB

0 200 400 600 800
0

20

40

SSB-flat

0 200 400 600 800
0

10

20

30

40
TPC-DS

0 50 100 150 200 250 300
T (min)

0

100

200

 (%
)

TPC-C

0 50 100 150 200 250 300
T (min)

0

20

40

60

Twitter

0 50 100 150 200 250 300
T (min)

0

200

400

Wikipedia

0 50 100 150 200 250 300
T (min)

0

5

10

15

20

Smallbank

0 50 100 150 200 250 300
T (min)

0

5

10

YCSB

0 250 500 750 1000 1250
0

20

40

60

 (%
)

TPC-H

0 200 400 600 800
0

20

40

JOB

0 200 400 600
0

10

20

30

40

SSB

0 200 400 600 800
0

20

40

SSB-flat

0 200 400 600 800
0

10

20

30

40
TPC-DS

0 50 100 150 200 250 300
T (min)

0

100

200

 (%
)

TPC-C

0 50 100 150 200 250 300
T (min)

0

20

40

60

Twitter

0 50 100 150 200 250 300
T (min)

0

200

400

Wikipedia

0 50 100 150 200 250 300
T (min)

0

5

10

15

20

Smallbank

0 50 100 150 200 250 300
T (min)

0

5

10

YCSB

(a) In-Schema Evaluation

(b) Cross-Schema Evaluation

HEBO
HEBO + Cost Model
HEBO + Workload Mapping

HEBO + Model Ensemble
Random Sampling + Cost Model
SMAC

SMAC + Cost Model
SMAC + Workload Mapping
SMAC + Model Ensemble

CDBTune
CDBTune + Cost Model
CDBTune + MP (w/ online tuning)

CDBTune + MP (w/o online tuning)
OpAdviser
DB-BERT

GPTuner
E2ETune

Figure 3: Best performance improvement over tuning time across 10 representative benchmarks. “MP” is the abbreviation of

Model Pre-training. (top-left is better)

to replace HEBO in generating training labels, a concept known as
“self-training” or “self-improvement” [28].

E2ETune surpasses other knowledge transfer methods

that utilize historical tuning knowledge (refer to +Workload

Mapping, +Model Ensemble, and +MP).While traditional knowl-
edge transfer techniques can speed up the tuning process, they still
require much longer time for tuning compared to E2ETune . These
methods still rely on the iterative processes of traditional knob
tuners. In contrast, E2ETune uses historical tuning data to train an
end-to-end knob tuner, removing redundant iterative steps.

E2ETune outperforms approaches that also use LMs in

knob tuning, such as DB-BERT [73] and GPTuner [36].While
thesemethods and our E2ETune both utilize LMs, they differ in their
primary objectives. DB-BERT andGPTuner use LMs to constrain the
search space for traditional knob tuners, thus they still necessitate
numerous workload replays. In contrast, E2ETune trains a language
model to directly predict suitable configurations. Consequently,
E2ETune not only significantly accelerates the tuning process but
also achieves comparable or superior performance enhancements
compared to these methods.

E2ETune is faster and better than traditional methods

assisted by the cost model (refer to +Cost Model).While our
trained cost model can replace time-consuming workload execu-
tion, traditional methods still require a lot of additional time to
update their models online and recommend new configurations
with each iteration, resulting in low efficiency. Furthermore, the
cost model can not always accurately reflect database performance,
leading traditional methods to identify sub-optimal configurations.
Moreover, even with random sampling of 1 million configurations,

the best option identified by the cost model often performs poorly,
highlighting the vast search space inherent in the knob tuning task.

8.2.2 Cross-Schema Evaluation. The cross-schema scenario assesses
how well a knowledge transfer method handles workloads from
new database instances. Traditional knob tuners and two knowl-
edge transfer methods (GPTuner and DB-BERT) exhibit the same
behavior in both cross-schema and in-schema scenarios since they
don’t use historical tuning tasks to initialize their models. As a re-
sult, these baselines are excluded from the cross-schema evaluation.

As illustrated in Figure 3 (b), in the cross-schema setting, E2ETune
not only achieves the highest tuning efficiency but also identifies
configurations that are comparable to, or even surpass, those of
state-of-the-art approaches. Notably, E2ETune discovers the best
configuration for the Smallbank benchmark and the second-best
configurations for TPC-H, SSB, TPC-C, and Twitter benchmarks.

An interesting discovery is that existing knowledge transfer
methods significantly expedite the tuning process and marginally
improve database performance in the in-schema setting, but their
effectiveness diminishes in the cross-schema environment. This
decline can be attributed to several factors. Firstly, techniques such
as workload mapping, model ensemble, and OpAdviser heavily rely
on workload matching, which becomes challenging when finding
similar workloads across different database instances. Additionally,
the limited generalization capability of the model pre-training tech-
nique, due to the small size of the actor and critic neural networks,
contributes to the reduced speedup and performance improvement
in the cross-schema scenario.

In contrast, E2ETune consistently outperforms baseline meth-
ods. Its tuning speed is unaffected by the familiarity of database
instances. Thanks to the generalization capabilities of the LM and

high-quality training data, E2ETune can effectively recommend
good configurations for out-of-distribution workloads.

0 100 200 300 400 500 600
T (min)

0

5

10

15

20

25

 (%
)

StackOverflow

0 200 400 600 800
T (min)

0

10

20

30

SSAG

0 50 100 150 200 250 300
T (min)

0

5

10

15

20
AMPS

HEBO
HEBO + Cost Model
HEBO + Workload Mapping
HEBO + Model Ensemble
Random Sampling + Cost Model

SMAC
SMAC + Cost Model
SMAC + Workload Mapping
SMAC + Model Ensemble

CDBTune
CDBTune + Cost Model
CDBTune + MP (w/ online tuning)
CDBTune + MP (w/o online tuning)

OpAdviser
DB-BERT
GPTuner
E2ETune

Figure 4: Maximum performance improvement over tuning

time on three real-world benchmarks. (top-left is better)

8.2.3 Real-World Evaluation. We train E2ETune using training
samples collected from 10 representative benchmarks and then
directly apply it to 3 real-world benchmarks. Notably, for SSAG
and AMPS, we implement all baseline methods and our E2ETune
in ByteDance’s internal development environments to assess their
effectiveness. These real-world benchmarks introduce several new
challenges for E2ETune , including more complex queries, larger
database scales, private database instances, and different deploy-
ment environments.

The experimental results are presented in Figure 4. In this highly
challenging evaluation setting, E2ETune exhibits remarkable out-
of-the-box capabilities, consistently identifying configurations com-
parable to those of state-of-the-art methods while significantly re-
ducing the time required. Although E2ETune does not achieve the
best configurations in this setting, it substantially saves time and
resources on tuning tasks, making it more suitable for real-world
large-scale deployments.

8.3 Ablation Study

8.3.1 Ablations on Input Features. As detailed in Section 6.1, the
input of E2ETune includes workload statistics, query plans, and
internal metrics. Ablation studies, shown in Table 2, reveal per-
formance drops when any component is removed, highlighting
their significance. Notably, omitting query plans greatly reduces
performance in the cross-schema setting. Query plans are vital
as they detail SQL operations and costs, reflecting the database’s
data distribution, thus aiding the LM in generalizing across diverse
database instances.

8.3.2 Ablations on LM Inference Strategy. As outlined in Section 7,
we adopt a “sampling-then-ranking” strategy to recommend config-
urations. To evaluate the effectiveness of this inference strategy, we
conduct an additional experiment in which we perform inference
without utilizing the cost model. Specifically, using the fine-tuned
language model, we only recommend a configuration through the
greedy decoding method. The evaluation results of this experiment
are presented in Table 2 (see “w/o sampling-then-ranking”). We
can see that the “sampling-then-ranking” strategy yields slight
improvements over the simple greedy decoding method.

8.3.3 Ablations on Output Knob Format. Section 6.2 discusses dis-
cretizing knob values into pre-defined buckets. To validate the

Table 2: Ablation studies of E2ETune. We present the aver-

age performance improvements Δ (%) ↑ on OLAP and OLTP

benchmarks. “IS” and “CS” represent “in-schema” and “cross-

schema” settings, respectively.

OLAP(IS) OLTP(IS) OLAP(CS) OLTP(CS)

E2ETune 51.4 156.2 50.1 150.6

Input Features
- w/o internal metrics 49.8 152.5 48.6 142.8
- w/o workload features 47.0 148.9 48.5 148.7
- w/o query plans 44.5 145.6 34.9 53.2

LM Inference Strategy
- w/o sampling-then-ranking 50.1 152.8 47.0 144.3

Knob Output Format
- specific values 15.1 45.3 9.4 36.8

LM Backbone
- CodeLLaMA-7B [59] 51.3 152.7 50.5 152.8
- LLaMA2-7B [68] 50.4 152.4 50.1 153.7
- DeepSeekCoder-7B [23] 48.8 159.6 48.8 135.3
- DeepSeekCoder-1B [23] 42.0 142.4 41.0 116.1
- Mistral-7B w/o Pre-training NA NA NA NA

LM Learning Strategy
- Few-shot Mistral-7B 33.8 114.2 28.6 109.5
- Few-shot GPT-4 35.3 115.4 30.9 116.4

OLAP(IS) OLTP(IS) OLAP(CS) OLTP(CS)
0

50

100

150

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t (

%
)

1/3 Training Data 2/3 Training Data All Training Data

Figure 5: Ablation study of the scale of training data.

efficacy of this bucketing approach, we conduct an experiment
where the LM directly output knob values (refer to “specific values”
in Table 2). The results clearly indicate a significant performance
decline when directly outputting values. The poor performance
can be attributed to the extensive range and substantial variation
in permissible values across different knobs, which poses signifi-
cant challenges for LMs when tasked with directly outputting knob
values. This highlights the effectiveness of the bucketing strategy.

8.3.4 Ablations on LM Backbone. We utilize Mistral-7B as the base
model of E2ETune. To evaluate the impact of different base models
on knob tuning performance, we replace Mistral-7B with other ro-
bust models such as CodeLLaMA-7B, LLaMA2-7B, DeepSeekCoder-
7B, and DeepSeekCoder-1B to explore model scale effects. Results
in Table 2 show that model performance varies by scale and set-
ting: Mistral-7B and DeepSeekCoder-7B excel in OLAP and OLTP
benchmarks in the in-schema setting, while CodeLLaMA-7B and
LLaMA2-7B perform best in the cross-schema setting. This perfor-
mance disparity is likely due to differences in pre-training corpora,
indicating that a more powerful base model can enhance E2ETune’s
performance. The 7B version of DeepSeekCoder significantly out-
performs the 1B version, highlighting the benefits of larger models.

To explore the impact of the pre-training phase on knob tun-
ing, we test a new Mistral-7B model with randomly initialized
weights followed by fine-tuning on our data. This model produce
unparseable outputs, underscoring the crucial role of pre-training.

8.3.5 Ablations on Scale of Training Data. We delve deeper into
the effects of the training data scale on the quality of configurations
recommended by the LM. Following the evaluation settings out-
lined in Section 8.1.6, we modify the scale of the training dataset for
our analysis. Our experiments are conducted across three different
scales: 1/3, 2/3, and the complete training dataset, with the results
visualized in Figure 5. The findings illustrate a notable positive rela-
tionship between the size of the training data and the enhancement
in configuration quality suggested by the LM. It is evident that this
trend persists even when utilizing the entire training set, suggesting
that the performance of E2ETune can be further optimized with
an expanded training dataset.

8.3.6 Ablations on LM Learning Strategy. Besides fine-tuning the
LM, another approach is few-shot in-context learning. This method
uses a small number of task-specific demonstrations within the
LM’s context, avoiding the need for extensive fine-tuning. We ran-
domly select 3 samples (<workload features, suitable configuration>
pairs) from the training set to use as demonstrations. The original
Mistral-7B andGPT-4models are then instructed to recommend con-
figurations for new workloads using these demonstration prompts.
Results in Table 2 (Few-shot Mistral-7B and GPT-4) show that few-
shot learning is less effective than full fine-tuning. Even with GPT-4,
the tuning performance is below the proposed E2ETune, due to
lower demonstration utilization efficiency.

8.3.7 Ablations on Modeling Algorithms. In E2ETune, we utilize a
language model to capture the distribution mapping from workload
features to their corresponding promising configurations. In this
ablation study, we aim to investigate whether traditional machine
learning models can also effectively capture this intricate distribu-
tion mapping. We evaluate two commonly used machine learning
approaches: random forests and multi-layer perceptrons (MLP). To
ensure a fair comparison, we maintain consistency in the input and
output information with E2ETune. However, some adjustments
should be made to accommodate these machine learning techniques.
Workload features are represented as a vector that combines work-
load statistics, query plan features, and internal metrics. Query
plan features are extracted using the methodology proposed in [39].
Then, as we discretize the knob values into buckets for E2ETune,
we can reconstruct the output into classification labels for tradi-
tional machine learning methods, where each label corresponds
to a specific bucket identifier. In the case of the random forest,
we specify 1000 trees and a maximum depth of 50. For the multi-
layer perceptron, a neural network with three hidden layers, each
comprising 128 dimensions, is employed. To mitigate overfitting,
batch normalization and dropout layers are incorporated. Given
the varying feature lengths across database instances, a separate
model needs to be trained for each new instance. Our evaluations
are conducted on the TPC-H and TPC-C benchmarks.

Results from the TPC-H benchmark show that the random forest
and MLP models yield performance improvements of 36.8% and
51.3% respectively, significantly lower than the 72.5% enhancement
achieved by E2ETune. Similarly, on the TPC-C benchmark, the
random forest and MLP models exhibit performance gains of 128.8%
and 177.5% respectively, while E2ETune outperforms them with a
remarkable 239.9% improvement. These findings reveal that despite
leveraging high-quality input features, traditional machine learning

methods struggle to capture the intricate distribution mapping due
to their limited modeling and generalization capabilities.

8.3.8 Ablations on Training Workload Generation Strategy. In the
database field, a common approach to generating workload queries
is to use predefined templates [47, 50, 84, 100]. However, we be-
lieve this strategy limits the diversity of the generated queries,
thereby constraining the generalizability of the trained models. In
this section, we conduct an ablation study on the JOB benchmark to
support this hypothesis. Specifically, following the Cardinality Esti-
mation Benchmark (CEB) [50], we employ 13 templates designed
for the JOB’s database instance, resulting in approximately 1,100
SQL queries combined into 299 distinct workloads. We then collect
labels (i.e., promising configurations) for these new template-based
workloads using the framework introduced in Section 5.3. Next,
we train two language models using training samples from GPT-
4-Turbo-generated workloads and template-generated workloads,
denoted as 𝑀ours and 𝑀CEB, respectively. Finally, we utilize both
𝑀ours and𝑀CEB to recommend configurations for the original JOB
benchmark workload. The results reveal that the configurations
recommended by 𝑀ours yield a 50.26% performance improvement,
while those from𝑀CEB result in only a 38.56% improvement. This
discrepancy highlights the importance of query diversity in training
a highly generalizable language model for knob tuning.

8.4 Evaluation of Training Data

The quality of E2ETune’s training dataset is crucial. Each training
sample consists of a <workload, promising configuration> pair,
crafted using the framework outlined in Section 5. We evaluate the
quality of these components individually.

8.4.1 Quality of Workloads. OLAP Workloads. The OLAP work-
loads used for training are generated by GPT-4-Turbo. In Table 3,
we provide a detailed statistical analysis of both GPT-generated
and benchmarked SQL queries across five aspects: the number of
referenced tables per SQL query, the number of joined tables per
SQL query, the number of referenced keywords per SQL query, the
number of predicates per SQL query, and the number of distinct
query templates. Our analysis reveals that GPT-generated queries
not only effectively cover the benchmarked queries but also signifi-
cantly enhance the diversity of query templates, underscoring the
quality of the queries produced by GPT-4-Turbo.OLTPWorkloads.

The OLTP workloads are generated by randomly assigning weights
to predefined transactions, ensuring high quality and diversity.

8.4.2 Quality of Labels. In this work, two key factors affect the
quality of labels: the knob tuning method and the cost model.

Tuning Method. Our primary objective in choosing a tuning
method is to select a powerful and easily deployable knob tuner. In
this regard, we assess three potential methods: HEBO, SMAC, and
CDBTune. Our experimental findings, detailed in Figure 3, demon-
strate that HEBO surpasses the other two methods in performance.
Consequently, we adopt HEBO to gather labels.

Cost Model. The quality of the cost model significantly impacts
label quality, as a substantial portion of the training set is derived
from it. To provide a comprehensive evaluation of the cost model,
we examine two critical aspects: (1) the accuracy of the cost model
and (2) the performance of HEBO assisted by the cost model. First,

Table 3: A statistical analysis of SQL queries from two sources: those generated by GPT-4-Turbo (denoted as GPT) and those from

the benchmark (denoted as Bench). For each statistic, except for the number of distinct templates, the minimum, maximum,

and average values are presented as “MIN / MAX / AVG”.

Statistics TPC-H JOB TPC-DS SSB SSB-flat

GPT Bench GPT Bench GPT Bench GPT Bench GPT Bench

Referenced Tables per SQL 1 / 8 / 5.43 1 / 8 / 3.41 1 / 13 / 5.88 4 / 15 / 8.51 1 / 11 / 5.46 1 / 13 / 5.63 2 / 5 / 3.93 2 / 5 / 3.76 1 / 1 / 1.0 1 / 1 / 1.0
Joined Tables per SQL 1 / 8 / 5.21 1 / 8 / 2.46 1 / 12 / 5.26 4 / 15 / 8.50 1 / 11 / 5.08 1 / 10 / 2.68 1 / 5 / 3.91 2 / 5 / 3.76 1 / 1 / 1.0 1 / 1 / 1.0
Referenced Keywords per SQL 14 / 34 / 21.96 14 / 29 / 20.27 12 / 40 / 26.62 11 / 27 / 18.24 13 / 42 / 25.41 12 / 38 / 23.44 14 / 33 / 21.79 13 / 19 / 15.77 15 / 33 / 22.74 12 / 16 / 14.15
Predicates per SQL 3 / 40 / 15.57 1 / 18 / 6.00 1 / 43 / 16.57 14 / 91 / 39.30 3 / 127 / 17.04 0 / 96 / 13.05 4 / 46 / 14.33 8 / 20 / 13.31 1 / 26 / 9.75 7 / 16 / 11.31
Distinct Templates 1099 21 1099 99 1088 49 1094 13 1100 11

we perform 10-fold cross-validation to train the cost model. For each
fold, we use the coefficient of determination (𝑅2) to evaluate the
cost model’s accuracy on the held-out test set: 𝑅2 = 1−

∑𝑛
𝑖=1 (𝑦𝑖−𝑦̂𝑖)2∑𝑛
𝑖=1 (𝑦𝑖−𝑦)2

,
where 𝑦𝑖 is the observed performance metric for the 𝑖-th sample, 𝑦𝑖
is the predicted performance metric, 𝑦 is the mean of all observed
metrics, and 𝑛 is the total test set observations. Our cost model
achieves an average 𝑅2 score of 0.862 across the 10-fold validation,
indicating high reliability. In addition, during label collection, the
cost model is trained using observations from all database instances.
Therefore, the quality of the configurations gathered by HEBO with
the cost model can be observed in the in-schema part of “HEBO
+ Cost Model” in Figure 3. Compared with the original HEBO, us-
ing the cost model only leads to a marginal decrease in database
performance, affirming the reliability of the cost model.

8.5 Data Collection Cost

To provide clarity on the expenses associated with collecting the
complete training dataset, we compute the time for each stage
detailed in Section 5, encompassing both workload generation and
label collection times. Importantly, it should be emphasized that
the training data collection process can be carried out offline.

8.5.1 Workload Generation. For OLAP workloads, we employ GPT-
4-Turbo to craft approximately 1,100 OLAP queries per database
instance. With a response time of approximately 20 seconds per
query and five database instances, the cumulative query generation
time amounts to roughly 31 hours, costing approximately $150. In
contrast, generating OLTP workloads incurs no additional expenses.

8.5.2 Label Collection. The training labels of E2ETune are sourced
from HEBO with real execution and HEBO with the cost model.

Collecting Data via Real Execution. For OLAP workloads,
executing the full workload takes between 1 to 20 minutes. Since
the original HEBO method requires replaying the workload in each
iteration, tuning an OLAP workload across 100 iterations may take
2 to 30 hours. For OLTP workloads, we use a 1-minute stress test
for each tuning iteration. As a result, the complete tuning process
for an OLTP workload takes approximately 2 hours. To ensure
accurate test results, workloads are tuned sequentially on the server.
With each database instance tuning 13 workloads, the full process
takes around 30 days on a single machine. In practice, we use eight
identical CPU servers to expedite this process.

Collecting Data via Cost Model. The results presented in Fig-
ure 3 demonstrate that the cost model can significantly enhance
tuning efficiency when compared to actual executions. This effi-
ciency boost facilitates the gathering of a substantial volume of

training data for E2ETune. Moreover, the elimination of the need
for database testing allows for the simultaneous tuning of multiple
workloads on a single machine. Leveraging the cost model, despite
each database instance needing to tune more than 250 workloads,
we can complete this task within 40 days using just one machine.
We also utilize eight identical CPU servers to accelerate the process.

9 DISCUSSION

In this section, we first discuss the applicable scenarios for E2ETune.
By leveraging the advantages of an end-to-end design, E2ETune sig-
nificantly enhances tuning efficiency while recommending promis-
ing configurations. When encountering a new database engine,
it is necessary to re-collect training data and train a new model
to tune knobs due to different knobs. Consequently, E2ETune is
particularly well-suited for stable or enumerable environments,
such as cloud services that maintain uniform hardware configura-
tions and standardized DBMS products. After the initial training,
E2ETune proves highly effective in recommending configurations
for a diverse range of users utilizing cloud databases. We are de-
ploying E2ETune in real-world applications at ByteDance and will
open-source our fine-tuned model to support further research. Ad-
ditionally, to accelerate data collection and enhance label quality,
we can explore and leverage better hyperparameter optimization
algorithms, such as HPFSO [3], SPBOpt [61], and DRE [33], as
replacements for HEBO in our data collection framework.

10 CONCLUSION

This paper explores an innovative method for end-to-end database
knob tuning. Our emphasis is on utilizing the advanced language
model (LM) to accurately capture the complex mapping between
the workload and its promising configuration. To achieve this goal,
we introduce a data generation framework to automatically produce
workloads and their promising configurations, serving as training
data samples for the LM. Through extensive experiments on OLAP
and OLTP benchmarks, we demonstrate that E2ETune not only sig-
nificantly improves the tuning efficiency over existing approaches,
but also showcases notable database performance improvements in
both in-schema and cross-schema settings.

ACKNOWLEDGMENTS

This work is supported by the National Key Research & Develop-
ment Plan of China (2023YFF0725100) and the National Natural
Science Foundation of China (62322214, U23A20299, U24B20144,
62172424, 62276270). We also acknowledge the support of the Public
Computing Cloud, Renmin University of China.

REFERENCES

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jef-
frey Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. 2014. OpenTuner:
an extensible framework for program autotuning. In International Conference
on Parallel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada,
August 24-27, 2014. ACM, 303–316.

[2] Jason Ansel, Edward Z. Yang, Horace He, Natalia Gimelshein, Animesh Jain,
Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta
Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito,
Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock
Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou,
Richard Zou, Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan,
Peng Wu, and Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning
Through Dynamic Python Bytecode Transformation and Graph Compilation.
In Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ASPLOS 2024, La
Jolla, CA, USA, 27 April 2024- 1 May 2024. ACM, 929–947.

[3] Carlos Ansótegui, Meinolf Sellmann, Tapan Shah, and Kevin Tierney. 2021.
Learning to Optimize Black-Box Functions with Extreme Limits on the Number
of Function Evaluations. In Learning and Intelligent Optimization: 15th Interna-
tional Conference, LION 15, Athens, Greece, June 20–25, 2021, Revised Selected
Papers 15. Springer, 7–24.

[4] Anthropic. 2024. Introducing the next generation of Claude. (2024). Available
at: https://www.anthropic.com/news/claude-3-family.

[5] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable Simple
Systems for Generating Structured Views of Heterogeneous Data Lakes. arXiv
preprint arXiv:2304.09433 (2023).

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al.
2023. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712 (2023).

[8] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke,
Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lund-
berg, Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro, and Yi Zhang.
2023. Sparks of Artificial General Intelligence: Early experiments with GPT-
4. CoRR abs/2303.12712 (2023). https://doi.org/10.48550/ARXIV.2303.12712
arXiv:2303.12712

[9] Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021.
Cgptuner: a contextual gaussian process bandit approach for the automatic
tuning of it configurations under varying workload conditions. Proceedings of
the VLDB Endowment 14, 8 (2021), 1401–1413.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, and et al. 2021. Evaluating Large Language
Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https:
//arxiv.org/abs/2107.03374

[11] Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan
Langdon, Reema Moussa, Matt Beane, Ting-Hao Huang, Bryan R. Routledge,
and William Yang Wang. 2021. FinQA: A Dataset of Numerical Reasoning over
Financial Data. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational
Linguistics, 3697–3711. https://doi.org/10.18653/V1/2021.EMNLP-MAIN.300

[12] Lixue Cheng, Ziyi Yang, Changyu Hsieh, Benben Liao, and Shengyu Zhang.
2022. ODBO: Bayesian optimization with search space prescreening for directed
protein evolution. arXiv preprint arXiv:2205.09548 (2022).

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, and et al. 2022. PaLM: Scaling Language Modeling with
Pathways. CoRR abs/2204.02311 (2022). arXiv:2204.02311

[14] Alibaba Cloud. 2024. Qwen2 Github. (2024).
https://github.com/QwenLM/Qwen2.

[15] Alexander I Cowen-Rivers, Wenlong Lyu, Zhi Wang, Rasul Tutunov, Hao Jianye,
Jun Wang, and Haitham Bou Ammar. 2020. Hebo: Heteroscedastic evolutionary
bayesian optimisation. arXiv preprint arXiv:2012.03826 (2020), 7.

[16] Benoît Dageville and Mohamed Zaït. 2002. SQL Memory Management in
Oracle9i. In Proceedings of 28th International Conference on Very Large Data
Bases, VLDB 2002, Hong Kong, August 20-23, 2002. Morgan Kaufmann, 962–973.

[17] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning. CoRR abs/2307.08691 (2023). https://doi.org/10.48550/
ARXIV.2307.08691 arXiv:2307.08691

[18] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.

[19] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning data-
base configuration parameters with ituned. Proceedings of the VLDB Endowment
2, 1 (2009), 1246–1257.

[20] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[21] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and robust automated ma-
chine learning. Advances in neural information processing systems 28 (2015).

[22] Jia-Ke Ge, Yan-Feng Chai, and Yun-Peng Chai. 2021. WATuning: a workload-
aware tuning system with attention-based deep reinforcement learning. Journal
of Computer Science and Technology 36, 4 (2021), 741–761.

[23] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When
the Large Language Model Meets Programming–The Rise of Code Intelligence.
arXiv preprint arXiv:2401.14196 (2024).

[24] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing
via Pre-training. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computa-
tional Linguistics, 4320–4333. https://doi.org/10.18653/V1/2020.ACL-MAIN.398

[25] Djoerd Hiemstra. 2000. A probabilistic justification for using tf x idf term
weighting in information retrieval. Int. J. Digit. Libr. 3, 2 (2000), 131–139.
https://doi.org/10.1007/S007999900025

[26] Benjamin Hilprecht and Carsten Binnig. 2021. One model to rule them all:
towards zero-shot learning for databases. arXiv preprint arXiv:2105.00642 (2021).

[27] Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. 2023.
AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and
Optimisation. CoRR abs/2312.13010 (2023). arXiv:2312.13010

[28] Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu,
and Jiawei Han. 2023. Large Language Models Can Self-Improve. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023. Association for Computational
Linguistics, 1051–1068.

[29] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential
model-based optimization for general algorithm configuration. In Learning
and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy,
January 17-21, 2011. Selected Papers 5. Springer, 507–523.

[30] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B. arXiv preprint
arXiv:2310.06825 (2023).

[31] Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen.
2022. OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022.
Association for Computational Linguistics, 932–942.

[32] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino,
and Shivaram Venkataraman. 2022. LlamaTune: sample-efficient DBMS config-
uration tuning. arXiv preprint arXiv:2203.05128 (2022).

[33] Abdus Salam Khazi, Sebastian Pineda Arango, and Josif Grabocka. 2023.
Deep ranking ensembles for hyperparameter optimization. arXiv preprint
arXiv:2303.15212 (2023).

[34] Mayuresh Kunjir and Shivnath Babu. 2020. Black or white? how to develop an
autotuner for memory-based analytics. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 1667–1683.

[35] Meghdad Kurmanji and Peter Triantafillou. 2023. Detect, Distill and Update:
Learned DB Systems Facing Out of Distribution Data. Proceedings of the ACM
on Management of Data 1, 1 (2023), 1–27.

[36] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2023. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization. arXiv
preprint arXiv:2311.03157 (2023).

[37] Viktor Leis, Andrey Gubichev, AtanasMirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[38] Stefan Lessmann, Robert Stahlbock, and Sven F Crone. 2005. Optimizing hyper-
parameters of support vector machines by genetic algorithms.. In IC-AI, Vol. 74.
82.

https://www.anthropic.com/news/claude-3-family
https://doi.org/10.48550/ARXIV.2303.12712
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.300
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.18653/V1/2020.ACL-MAIN.398
https://doi.org/10.1007/S007999900025

[39] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[40] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. Resdsql: Decoupling
schema linking and skeleton parsing for text-to-sql. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 37. 13067–13075.

[41] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards Building
Open-source Language Models for Text-to-SQL. CoRR abs/2402.16347 (2024).
arXiv:2402.16347

[42] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems 36 (2024).

[43] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,
James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-
Level Code Generation with AlphaCode. CoRR abs/2203.07814 (2022). https:
//doi.org/10.48550/ARXIV.2203.07814 arXiv:2203.07814

[44] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.
2022. SMAC3: A versatile Bayesian optimization package for hyperparameter
optimization. The Journal of Machine Learning Research 23, 1 (2022), 2475–2483.

[45] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao,
Xiubo Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wizard-
Math: Empowering Mathematical Reasoning for Large Language Models via
Reinforced Evol-Instruct. CoRR abs/2308.09583 (2023). https://doi.org/10.48550/
ARXIV.2308.09583 arXiv:2308.09583

[46] Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo,Wentai Zhang, ChenghaoMa,
Guanting Dong, Meina Song, Wei Lin, et al. 2023. Chatkbqa: A generate-then-
retrieve framework for knowledge base question answering with fine-tuned
large language models. arXiv preprint arXiv:2310.08975 (2023).

[47] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization
Practical. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021. ACM, 1275–1288.

[48] Meta. 2024. Introducing Meta Llama 3: The most capable openly available LLM
to date. (2024). https://ai.meta.com/blog/meta-llama-3/.

[49] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022.
Cross-Task Generalization via Natural Language Crowdsourcing Instructions.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022,
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association
for Computational Linguistics, 3470–3487. https://doi.org/10.18653/V1/2022.
ACL-LONG.244

[50] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-loss: learning cardinality
estimates that matter. Proc. VLDB Endow. 14, 11 (July 2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[51] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[52] OpenAI. 2024. GPT-4 Turbo and GPT-4. (2024).

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.
[53] Patrick E O’Neil, Elizabeth J O’Neil, and Xuedong Chen. 2007. The star schema

benchmark (SSB). Pat 200, 0 (2007), 50.
[54] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. The synthetic

data vault. In 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 399–410.

[55] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed
In-Context Learning of Text-to-SQL with Self-Correction. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/
72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html

[56] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie
Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023. ToolLLM:
Facilitating Large Language Models to Master 16000+ Real-world APIs. CoRR
abs/2307.16789 (2023). arXiv:2307.16789

[57] Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, Jun Xu, and Ji-RongWen. 2024. Tool Learning with Large Language Models:
A Survey. CoRR abs/2405.17935 (2024). arXiv:2405.17935

[58] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
memory optimizations toward training trillion parameter models. In Proceedings
of the International Conference for High Performance Computing, Networking,

Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020. IEEE/ACM, 20.

[59] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

[60] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika,
Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, MananDey,M Saiful
Bari, Canwen Xu, and et al. 2022. Multitask Prompted Training Enables Zero-
Shot Task Generalization. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[61] Mikita Sazanovich, Anastasiya Nikolskaya, Yury Belousov, and Aleksei Sh-
pilman. 2021. Solving black-box optimization challenge via learning search
space partition for local Bayesian optimization. In NeurIPS 2020 Competition
and Demonstration Track. PMLR, 77–85.

[62] Murray Shanahan. 2024. Talking about large language models. Commun. ACM
67, 2 (2024), 68–79.

[63] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. DeepSeekMath: Pushing the Limits
of Mathematical Reasoning in Open Language Models. CoRR abs/2402.03300
(2024). https://doi.org/10.48550/ARXIV.2402.03300 arXiv:2402.03300

[64] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, DaanWierstra, andMar-
tin Riedmiller. 2014. Deterministic policy gradient algorithms. In International
conference on machine learning. Pmlr, 387–395.

[65] Sahaana Suri, Ihab F. Ilyas, Christopher Ré, and Theodoros Rekatsinas. 2021.
Ember: No-Code Context Enrichment via Similarity-Based Keyless Joins. Proc.
VLDB Endow. 15, 3 (2021), 699–712.

[66] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. ibtune: Individualized buffer
tuning for large-scale cloud databases. Proceedings of the VLDB Endowment 12,
10 (2019), 1221–1234.

[67] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer
Is Almost All You Need towards Democratizing Data Preparation. Proc. VLDB
Endow. 14, 8 (2021), 1254–1261.

[68] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv. org/abs/2307.09288 (2023).

[69] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, and et al. 2023. Llama 2: Open Foundation
and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023). arXiv:2307.09288

[70] Transaction Processing Performance Council (TPC). [n.d.]. TPC-DS: Decision
Support Benchmark. Online. Available: http://www.tpc.org/tpcds/.

[71] Transaction Processing Performance Council (TPC). Year of the specification
version. TPC-H Benchmark Specification. Online. Available: http://www.tpc.
org/tpch/.

[72] Immanuel Trummer. 2022. CodexDB: Synthesizing code for query processing
from natural language instructions using GPT-3 Codex. Proceedings of the VLDB
Endowment 15, 11 (2022), 2921–2928.

[73] Immanuel Trummer. 2022. DB-BERT: a Database Tuning Tool that" Reads the
Manual". In Proceedings of the 2022 International Conference on Management of
Data. 190–203.

[74] Immanuel Trummer. 2023. Can Large Language Models Predict Data Correla-
tions from Column Names? Proceedings of the VLDB Endowment 16, 13 (2023),
4310–4323.

[75] Immanuel Trummer. 2023. Demonstrating GPT-DB: Generating Query-Specific
and Customizable Code for SQL Processing with GPT-4. Proceedings of the
VLDB Endowment 16, 12 (2023), 4098–4101.

[76] Immanuel Trummer. 2023. From bert to gpt-3 codex: harnessing the po-
tential of very large language models for data management. arXiv preprint
arXiv:2306.09339 (2023).

[77] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[78] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine learning-
based automatic configuration tuning services on real-world database manage-
ment systems. Proceedings of the VLDB Endowment 14, 7 (2021), 1241–1253.

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. Advances in neural information processing systems 30 (2017).

[80] Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and Michael A
Osborne. 2021. Think global and act local: Bayesian optimisation over
high-dimensional categorical and mixed search spaces. arXiv preprint
arXiv:2102.07188 (2021).

https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.03300
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

[81] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. UDO: uni-
versal database optimization using reinforcement learning. arXiv preprint
arXiv:2104.01744 (2021).

[82] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models. In Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022.

[83] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019).

[84] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo,
and Ion Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert
Demonstrations. In SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati,
and Amr El Abbadi (Eds.). ACM, 931–944. https://doi.org/10.1145/3514221.
3517885

[85] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023.
Large Language Models are Versatile Decomposers: Decomposing Evidence and
Questions for Table-based Reasoning. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2023, Taipei, Taiwan, July 23-27, 2023. ACM, 174–184.

[86] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[87] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

[88] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin
Cui. 2022. Facilitating database tuning with hyper-parameter optimization: a
comprehensive experimental evaluation. Proceedings of the VLDB Endowment
15, 9 (2022), 1808–1821.

[89] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. Restune: Resource oriented tuning boosted by meta-
learning for cloud databases. In Proceedings of the 2021 international conference
on management of data. 2102–2114.

[90] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards
dynamic and safe configuration tuning for cloud databases. In Proceedings of
the 2022 International Conference on Management of Data. 631–645.

[91] Xinyi Zhang, Hong Wu, Yang Li, Zhengju Tang, Jian Tan, Feifei Li, and Bin Cui.
2023. An Efficient Transfer Learning Based Configuration Adviser for Database
Tuning. Proceedings of the VLDB Endowment 17, 3 (2023), 539–552.

[92] Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2023. Automatic Database Knob
Tuning: A Survey. IEEE Transactions on Knowledge and Data Engineering (2023).

[93] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670.

[94] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024. Judging
llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Informa-
tion Processing Systems 36 (2024).

[95] Aojun Zhou, KeWang, Zimu Lu,Weikang Shi, Sichun Luo, ZipengQin, Shaoqing
Lu, Anya Jia, Linqi Song, Mingjie Zhan, and Hongsheng Li. 2023. Solving
Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-
based Self-Verification. CoRR abs/2308.07921 (2023). arXiv:2308.07921

[96] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database meets
artificial intelligence: A survey. IEEE Transactions on Knowledge and Data
Engineering 34, 3 (2020), 1096–1116.

[97] Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. 2023. Llm as dba. arXiv preprint
arXiv:2308.05481 (2023).

[98] Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming
Wu, Jiesi Liu, Ruohang Feng, and Guoyang Zeng. 2023. D-Bot: Database Di-
agnosis System using Large Language Models. CoRR abs/2312.01454 (2023).
https://doi.org/10.48550/ARXIV.2312.01454 arXiv:2312.01454

[99] Xuanhe Zhou, Zhaoyan Sun, and Guoliang Li. 2024. DB-GPT: Large Language
Model Meets Database. Data Science and Engineering (2024), 1–10.

[100] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu
Wu, and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc.
VLDB Endow. 16, 6 (2023), 1466–1479.

https://doi.org/10.1145/3514221.3517885
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.48550/ARXIV.2312.01454

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Knob Tuning System
	2.2 Language Models for Databases

	3 Problem Definition
	4 E2ETune Overview
	5 Training Data Construction
	5.1 OLAP Workload Generation
	5.2 OLTP Workload Generation
	5.3 Label Collection
	5.4 Cost Model

	6 Fine-tuning LM
	6.1 LM Input Sequence
	6.2 LM Output Sequence
	6.3 Loss Function

	7 Knob Tuning with Fine-tuned LM
	8 EXPERIMENT
	8.1 Experimental Settings
	8.2 Main Results
	8.3 Ablation Study
	8.4 Evaluation of Training Data
	8.5 Data Collection Cost

	9 DISCUSSION
	10 CONCLUSION
	Acknowledgments
	References

